Pareto-based continuous evolutionary algorithms for multiobjective optimization
نویسندگان
چکیده
In an attempt to solve multiobjective optimization problems, many traditional methods scalarize an objective vector into a single objective by a weight vector. In these cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands a user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, Pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. These algorithms are based on Continuous Evolutionary Algorithms, which were developed by the authors to solve single-objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method for fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Paretooptimal tradeoff surface. Finally, the validity of this method has been demonstrated through some numerical examples.
منابع مشابه
Comprehensive Survey of the Hybrid Evolutionary Algorithms
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) and an improved non-dominating sorting multiobjective genetic algorithm (NSGA-II) are two well known multiobjective evolutionary algorithms (MOEAs) in the field of evolutionary computation. This paper mainly reviews their hybrid versions and some other algorithms which are developed for solving multiobjective optimization pro...
متن کاملPareto-based Cost Simulated Annealing for Multiobjective Optimization
In this paper, a multiobjective simulated annealing (MOSA) method is introduced and discussed with the multiobjective evolutionary algorithms (MOEAs). Though the simulated annealing is a very powerful search algorithm and has shown good results in various singleobjective optimization fields, it has been seldom used for the multiobjective optimization because it conventionally uses only one sear...
متن کاملMultiobjective evolutionary algorithms: A survey of the state of the art
This paper reviews some state-of-the-art hybrid multiobjective evolutionary algorithms (MOEAs) dealing with multiobjective optimization problem (MOP). The mathematical formulation of a MOP and some basic definition for tackling MOPs, including Pareto optimality, Pareto optimal set (PS), Pareto front (PF) are provided in Section 1. Section 2 presents a brief introduction to hybrid MOEAs.
متن کاملEvolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction
− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...
متن کاملThe Pareto Differential Evolution Algorithm
The use of evolutionary algorithms (EAs) to solve problems with multiple objectives (known as Vector Optimization Problems (VOPs)) has attracted much attention recently. Being population based approaches, EAs offer a means to find a group of pareto–optimal solutions in a single run. Differential Evolution (DE) is an EA that was developed to handle optimization problems over continuous domains. ...
متن کامل